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Abstract: The species sensitivity distribution (SSD) is a statistical approach that is used to estimate either the concentration
of a chemical that is hazardous to no more than x% of all species (the HCx) or the proportion of species potentially affected
by a given concentration of a chemical. Despite a significant body of published research and critical reviews over the past
20 yr aimed at improving the methodology, the fundamentals remain unchanged. Although there have been some recent
suggestions for improvements to SSD methods in the literature, in general, few of these suggestions have been formally
adopted. Furthermore, critics of the approach can rightly point to the fact that differences in technical implementation can
lead to marked differences in results, thereby undermining confidence in SSD approaches. Despite the limitations, SSDs
remain a practical tool and, until a demonstrably better inferential framework is available, developments and enhance-
ments to conventional SSD practice will and should continue. We therefore believe the time has come for the scientific
community to decide how it wants SSD methods to evolve. The present study summarizes the current status of, and
elaborates on several recent developments for, SSD methods, specifically, model averaging, multimodality, and software
development. We also consider future directions with respect to the use of SSDs, with the ultimate aim of helping to
facilitate greater international collaboration and, potentially, greater harmonization of SSD methods. Environ Toxicol
Chem 2021;40:293–308. © 2020 SETAC
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INTRODUCTION
The species sensitivity distribution (SSD) is a statistical

approach that is used to estimate either the concentration of a
chemical that is hazardous to no more than x% of all species
(the HCx) or the proportion of species potentially affected by a
given concentration of a chemical. Following its introduction in
the 1980s (Stephan et al. 1985; Kooijman 1987; van Straalen
and Denneman 1989), the SSD has remained the most widely
used method for deriving water quality benchmarks (guide-
lines, criteria, or standards, depending on the jurisdiction) to
characterize effects of chemical contaminants on water quality

and/or for ecological risk assessment purposes. The SSD has
proved to be a useful, practical, and intuitive tool (Belanger
et al. 2017; Belanger and Carr 2019), albeit not without
numerous limitations (e.g., Organisation for Economic
Co‐operation and Development 1992; Forbes and Forbes 1993;
Smith and Cairns 1993; Warne 1998; Newman et al. 2000;
Forbes and Calow 2002; Wheeler et al. 2002a, 2002b;
Zajdlik 2006; Hickey and Craig 2012; European Centre for
Ecotoxicology and Toxicology of Chemicals 2014), including the
implausibility of the many assumptions underpinning SSDs and
concerns arising from inconsistent statistical results. Despite a
significant body of published research and numerous intensive
reviews (e.g., Organisation for Economic Co‐operation and
Development 1992; Posthuma et al. 2002; European Centre for
Ecotoxicology and Toxicology of Chemicals 2014; Fisher
et al. 2019) over the past 20 yr aimed at improving SSD
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methods, the fundamental SSD approach employed by juris-
dictions around the world has remained similar. However,
variations do exist in some of the technical details of
the methods and associated software tools that have been
developed and employed, which can lead to marked differences
in results and can undermine confidence in SSD approaches.

Despite the limitations, SSDs remain a practical tool and,
until a demonstrably better inferential framework is available,
developments and enhancements to conventional SSD practice
will and should continue. Indeed, numerous studies have
attempted to address many of the limitations, including issues
of sample size, species representativeness and selection, test
endpoints, ecological relevance, phylogenetic relatedness, and
routes of exposure (e.g., de Zwart and Posthuma 2005; Dyer
et al. 2006; Fox 2010; Wang et al. 2015; Warne et al. 2018;
Belanger and Carr 2019; Carr and Belanger 2019; Moore
et al. 2019; Schwarz and Tillmanns 2019). Although certain
improvements to formal SSD methods have recently been
adopted (i.e., methods typically approved and recommended
for use by national, provincial, and state regulatory bodies; see:
Warne et al. 2018; British Columbia Ministry of Environment
and Climate Change Strategy 2019), in general, few of the
outcomes of SSD studies from the past 20 yr have been
formally adopted. Moreover, where refinements to formal SSD
methods have been made, they have typically been done on a
national or regional scale and over different timeframes, in the
absence of any globally agreed consensus or vision. We
believe the time has come to stand back and assess what has
been done to date and how, as a scientific community, we want
SSD methods to evolve.

The present review summarizes the current status of SSD
methods and elaborates on some specific recent develop-
ments, specifically, model averaging (where the HCx is esti-
mated using a weighted‐average of a number of individual
SSDs), multimodality, and software development. We also
consider future directions for SSDs, with the ultimate aim of
helping to facilitate greater international collaboration and,
potentially, greater harmonization of SSD methods.

CURRENT STATUS
SSD methodologies

This section provides a brief summary of the history and
progress of formal SSD methods in key jurisdictions.

The history of the application of SSDs in North America has
been well documented by Suter (2002) and Stephan (2002).
The current method in the United States for deriving water
quality benchmarks (WQBs; Stephan et al. 1985) has been in
place for 35 yr. To derive the hazardous concentration for 5% of
the species (HC5), a log‐triangular distribution is applied to the
4 genus‐level toxicity values whose cumulative probabilities are
closest to the 0.05 probability point, which, except for very
large data sets, will always correspond to the 4 most sensitive
genera. Long‐awaited revisions to the approach of the US
Environmental Protection Agency (USEPA; 2020) are embodied
in the recently released SSD Toolbox software. However, SSD
Toolbox is not an update to the USEPA's long‐standing WQB

derivation methodology (Stephan et al. 1985), but instead was
developed to allow users to use statistical methods and
approaches that reflect their risk assessment objectives
(M. Etterson, US Environmental Protection Agency,
Washington, DC, personal communication). The SSD Toolbox
also incorporates model averaging similar to the approach
developed in Canada (see the following discussion).

Various European countries have used SSD‐based
approaches since the 1980s for both WQB derivation and risk
assessment purposes. A harmonized approach for deriving
WQBs, which included the use of SSDs, was adopted across
the European Union in 2005 (Lepper 2005) and updated in
2011 (European Commission 2011). The approach permits the
use of different parametric distributions (e.g., log–normal,
log–logistic, Burr type III) for the SSD, but requires thorough
justification if the choice of distribution is not the log–normal
or log–logistic. The use of the ETX‐computer program
(Van Vlaardingen et al. 2004) is recommended as appropriate
for calculating HCx values, although it is not prescribed.
Another key SSD software tool, developed in France, is
MOSAIC (Kon Kam King et al. 2014).

In 2000, Australia and New Zealand (Australian and New
Zealand Environment and Conservation Council/Agriculture
and Resource Management Council of Australia and New
Zealand 2000) adopted an SSD‐based method for deriving
WQBs, following a critical review of multiple WQB deriva-
tion methods (Warne 1998). A distinct feature of the
method was the use of a 3‐parameter Burr distribution to
model the empirical SSD, which was implemented in the
Burrlioz software tool (Campbell et al. 2000). This represented
a generalization of the methods previously employed by
Aldenberg and Slob (1993) because the log–logistic dis-
tribution was shown to be a specific case of the Burr family
(Tadikamalla 1980). Recent revision of the derivation method
recognized that using the 3‐parameter Burr distributions for
small sample sizes (<8 species) created additional uncertainty
by estimating more parameters than could be justified, es-
sentially overfitting the data (Batley et al. 2018). Consequently,
the method, and the updated software (Burrlioz Ver 2.0), now
uses a 2‐parameter log–logistic distribution for these small
data sets, whereas the Burr type III distribution is used for data
sets of 8 species or more (Batley et al. 2018; Australian and
New Zealand Guidelines 2018).

In Canada, the transition from a deterministic approach to
the preferential use of SSDs occurred in 2007 (Canadian
Council of Ministers of the Environment 2007). Reviews of
available statistical models by Zladjik (2005, 2006) recom-
mended the choice of a single statistical distribution from a
suite of at least 6 distributions (Burr type III, Gumbel, logistic,
log–normal, normal, and Weibull), with goodness‐of‐fit analysis
used to determine the most appropriate model. This was im-
plemented in SSD Master (Canadian Council of Ministers of the
Environment 2013), an Excel macro, which uses ordinary least
squares to fit an SSD to the empirical cumulative distribution
function (cdf ). This contrasts with most other methods, which
use maximum likelihood estimation. More recently, the British
Columbia Ministry of Environment and Climate Change
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Strategy developed a model‐averaging approach using the
R package ssdtools (Thorley and Schwarz 2018), and this
has been used at the national level (Canadian Council of
Ministers of the Environment 2019, 2020). A web‐based app,
shinyssdtools, has also been developed to provide a Graphical
User Interface (GUI) for the ssdtools R package (Dalgarno
2018). Hereafter, we use the term (shiny)ssdtools to refer to
both ssdtools and shinyssdtools.

Currently available SSD software tools
Currently, there are at least 9 software tools for fitting SSDs

using a variety of methods (Table 1). We consider maximum
likelihood to be the most suitable method from a regulatory
perspective, because it is generally less biased than moment
matching, does not require the specification of prior dis-
tributions (unlike Bayesian methods), and lends itself to model
averaging (unlike least squares).

The tools, which are free to use, all estimate the HC5, and
most will estimate an HCx for any user‐supplied value of x,
together with confidence intervals. The most common dis-
tributions are the log–logistic and log–normal, which are each
implemented in 6 of the 9 tools. All the distributions are
2‐parameter distributions (the log–triangular is symmetric)
except for the Burr type III and the log‐t distributions. Four of
the software tools in Table 1 (hSSD, MOSAIC, SSD Toolbox,
and (shiny)ssdtools) handle censored data, which is an im-
portant ability when one is dealing with small data sets that
contain observations expressed as “<” or “>” values (Kon Kam
King et al. 2014; Aldenberg 2015).

Only the SSD Toolbox (Etterson 2020), which has recently
been released by the USEPA, and (shiny)ssdtools, which was
developed for the British Columbia Ministry of Environment
and Climate Change Strategy (Dalgarno 2018; Thorley and
Schwarz 2018), implement model averaging. It is important to
be aware that (shiny)ssdtools consists of ssdtools—a
stand‐alone R package (Thorley and Schwarz 2018)—and
shinyssdtools (Dalgarno 2018), a second R package that
provides a bilingual (English and French) GUI to ssdtools. The
advantage of this separation is discussed in the next paragraph.
Because only SSD Toolbox and (shiny)ssdtools fit 6 of the
10 distributions (Table 1) using maximum likelihood, because
they run on all 3 major platforms (Table 1), and because they
have GUIs, we consider them to be the most useful of the
9 software tools. Consequently, they are the focus for the
remainder of this section.

The SSD Toolbox is written in the commercial MATLAB®

language and is provided as a precompiled binary that
can be run by locally installing the free MATLAB Runtime
libraries. The ssdtools and shinyssdtools are both written in
the open source R language (R Development Core
Team 2020). The source code for both has been released
under the open source Apache Licence Ver 2.0 (GitHub
2019a, 2019b), which allows users to modify and/or distribute
the code under the same licence. We consider open source
software to be preferable to compiled code because it allows
code validation and facilitates collaboration and replication

(Munafò et al. 2017; Mancini et al. 2020). The SSD Toolbox
allows distributions to be fitted using Bayesian methods
and can statistically account for multiple datapoints for
each species using hierarchical models. Neither of these
features is currently implemented in (shiny)ssdtools. How-
ever, by separating the scripting and GUI components into
ssdtools and shinyssdtools, respectively, developers can
readily extend (shiny)ssdtools functionality or incorporate it
into their own software. Shinyssdtools also provides an
R script allowing the user to replicate the analysis they per-
formed through the GUI. Finally, a web‐based version of
shinyssdtools that does not require the user to install R and
runs on any browser is available (Dalgarno 2018).

Although we are not advocating adoption of a single
standard approach or software tool, we think there is a need for
closer jurisdictional collaboration, greater harmonization of
methods, and development of at least some benchmark data
sets and reference results. The last of these is particularly
pressing given the frequency with which we have observed
noticeably different HCx values for the same data set from the
different tools in Table 1. This issue is outside the scope of the
present review, and a comprehensive review of features
together with detailed performance comparisons is currently
being prepared for a follow‐up study. Some differences be-
tween the outputs of different tools are to be expected if
different estimation strategies are employed (for example,
maximum likelihood vs moment matching or single SSD vs a
model‐averaged SSD), but all things being equal, all tools
should give the same point estimates to within some nominally
small tolerance (e.g., 1–2%). Differences of a factor of 2 or more
are definitely indicative of flawed coding and/or numerical
instabilities and convergence issues.

The use of “reference data sets” is not a new idea; they
were commonly used in the early days of statistical com-
puting to allow both software developers and end‐users to
assess the adequacy of numerical routines underpinning
routine analyses such as analysis of variance, regression, and
correlation. Even today, the National Institute of Standards
and Technology (2003) still maintains a number of statistical
reference data sets, including the famous Longley data set
(Longley 1967).

TECHNICAL CHALLENGES
There have been several improvements to the SSD meth-

odology over the last 20 yr or so, most of which have been
driven by advances in computing technology. For example, the
early preferential use of the log–logistic distribution as a
candidate SSD was not because it is intrinsically better than
alternative distributions such as the log–normal, gamma, or
3‐parameter Burr distribution, for example, but because “it has
some nice mathematical features that make certain calculations
relatively easy” (Aldenberg and Slob 1993). Software tools like
SSD Master (Intrinsik 2013) utilized the simplicity and compu-
tational power of Excel to fit a wider range of theoretical
probability distributions. However, the lack of more sophisti-
cated algorithms in Excel meant that this was done using
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methods that were statistically inferior to the generally
preferred maximum likelihood estimation procedure. Most
contemporary software tools for SSD modeling utilize a com-
bination of maximum likelihood estimation of the HCx and
resampling methods such as the bootstrap (Efron and
Tibshirani 1986) to obtain confidence intervals. Alternative
statistical paradigms such as Bayesian methods are now viable
alternatives for ecotoxicology (Fox 2010; Zhang et al. 2012)
because of the ready availability of free software tools such as
JAGS (Plummer 2003) and STAN (Gelman et al. 2015) coupled
with the computational power of modern desktop computers.
The use of nonparametric or “distribution‐free” statistical
methods has been suggested as a means of overcoming the
drawbacks associated with fitting and using SSDs (Van Der
Hoeven 2001; Carr and Belanger 2019), although as noted by
Van Der Hoeven (2001), such methods are unlikely to be useful
for n< 19. For samples ≥20, parametric modeling of the SSD,
as discussed in the present review, provides a richer statistical
framework than nonparametric counterparts.

Against this backdrop of continual refinement and im-
provement, SSD modeling continues to be hampered by some
persistent and seemingly intractable problems. Deficiencies in
the theory and application of SSDs have been comprehensively
documented in the literature, and although it is not our
intention to revisit these problems, the critical issue of

identification of the functional form of the SSD represents an
ongoing challenge for ecotoxicology.

Identification of the functional form of the SSD
Many authors have noted that there is no guiding theory in

ecotoxicology to justify any particular distributional form for the
SSD other than that its domain be restricted to the positive real
line (Newman et al. 2000; Zajdlik 2005; Chapman et al. 2007;
Fox 2016). Indeed, Chapman et al. (2007) described the iden-
tification of a suitable probability model as one of the most
important and difficult choices in the use of SSDs. Com-
pounding this lack of clarity about the functional form of the
SSD is the omnipresent, and equally vexatious issue of small
sample size. As noted by Chapman et al. (2007) and Fox (2016),
small samples result in low‐powered goodness‐of‐fit tests,
meaning that any plausible candidate model is unlikely to be
rejected by these procedures. For example, consider the small
toxicity data set: {13.26, 8.27, 21.22, 16.23, 17.02, 3.28}. Plots
and Anderson–Darling goodness‐of‐fit test statistics suggest
that the log–normal, Weibull, log–logistic, and gamma dis-
tributions are all plausible SSDs for these data (Figure 1).

The fixation on distributional form and fit is somewhat
unique to SSD modeling because it defines the behavior of the
model(s) in the left‐tail region of the distribution. To illustrate

FIGURE 1: Q–Q plots and goodness‐of‐fit test statistics for 4 probability distributions fitted to a small toxicity data set. AD= the Anderson–Darling
goodness‐of‐fit statistic; CI= confidence interval.
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why this is important, consider the triangular and log–normal
distributions in Figure 2A. The distributions have the same
means (7.5) and the same variances (19.5) and are both pos-
itively skewed. However, in the region of interest to ecotox-
icologists, these 2 distributions are very different (Figure 2B).
Unlike the log–normal distribution, the triangular distribution
has an abrupt cut‐off, resulting in very different probability and
quantile determinations. Thus, for the distributions in Figure 2,
we would conclude that the fraction of affected species at a
concentration of 1.5 units is either 3% using the triangular
distribution or 0.4% using the log–normal distribution.

Clearly, modeling the left tail in a manner that most closely
resembles the underlying but unknown distribution is of critical
importance in ecotoxicology, yet in practice this is precisely the
region of greatest uncertainty.

Multimodality
In our experience, multimodality (and in particular, bimodality)

of the empirical SSD is not uncommon. This issue arises because
the toxicity data underpinning the empirical SSD are not from a
single, common probability model, as is conventionally assumed.
The use of toxicity data that relate to different taxonomic groups,
endpoints, test durations, modes of action, or sensitivities will often
result in multimodal SSDs. At the very least, a somewhat arbitrary
dichotomy is usually identified based on test organisms being
“more” or “less” sensitive to the toxicant under consideration.

As an obvious example, the toxicity of an herbicide to plants
and animals will, by design, often be markedly different. In such
cases, the empirical SSD will exhibit bimodality (that is, the dis-
tribution has 2 modal values). We acknowledge that, in a regu-
latory risk assessment context, the usual advice is to fit different
SSDs to different segments of species at risk (e.g., aquatic plants,
terrestrial plants, aquatic invertebrates, and fish). Such advice is
sound when there is a clear regulatory interest in the different
species groupings. However, as previously noted, this may be
impractical if insufficient data are available in any or all subgroups

to meaningfully fit an SSD. Furthermore, as we do not know the
exact mode of action of many substances, bimodality cannot be
ruled out for any dataset, and it may also be unclear which end-
point observations belong to which group when there is overlap
in the multiple distributions. Finally, in the derivation of WQBs, it
is a common and accepted practice internationally to derive
concentrations of chemicals that will protect (or not affect) aquatic
ecosystems as a whole, not just a specific subgroup of the eco-
system, and thus methods for estimating percentage species
protection values that can accommodate multimodality of the
underlying distribution are needed.

Although theoretical bimodal univariate probability dis-
tributions do exist (e.g., Equation 1 and Figure 3), these are
relatively uncommon and lack the flexibility to be useful can-
didate SSDs.
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Although there is little guidance on effective strategies for
SSD modeling with multimodal data sets, the recently revised
Australian and New Zealand method for deriving guideline
values for toxicants (Warne et al. 2018) suggests taking a
weight‐of‐evidence approach based on a chemical's mode of
action, indications of bimodality or multimodality, and the
presence of taxa‐specific sensitivity. Furthermore, Warne et al.
(2018) suggest that indications of bimodality should be based
on both a visual inspection of the empirical SSD coupled with
the computation of the bimodality coefficient (BC; Freeman
and Dale 2013; Pfister et al. 2013) given by Equation 2.
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+
( − )

( − )( − )
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n
n n

2

3 1
2 3
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where γ is the skewness; κ is the excess kurtosis; and n is the
sample size.

FIGURE 2: Comparison of probability density functions for triangular (blue curve) and lognormal (red curve) distributions. Full view (A) and left tail
view (B).
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Although there is no formal test of significance associated
with the bimodality coefficient, a rule‐of‐thumb is that a value
>0.555 (the value for a uniform distribution) is consistent with
an underlying bimodal SSD (Freeman and Dale 2013; Pfister
et al. 2013).

When the weight‐of‐evidence assessment indicates the
presence of bimodality that is known or thought to be due to a
specific mode of action, the recommendation is that “the data
set should be split and only the data belonging to the most
sensitive group of species should be used to derive the
[guideline value]” (Warne et al. 2018). This is also consistent
with the advice given by Stephan et al. (1985). If the bimodality
cannot be linked to a specific mode of action, then the rec-
ommendation is to use professional judgment, although what
that might entail is not specified.

Splitting a small toxicity data set into even smaller subsets
based on either known or assumed toxicity groupings is only
feasible when the number of toxicity values in each of the
subsets satisfies recommended minimum sample size require-
ments for SSD modeling. Failing this, the researcher is pre-
sumably left with the choice of either fitting a single SSD to the
complete (bimodal) data set or abandoning the SSD modeling
exercise altogether.

The first option leads us to reflect on the desirability of fit-
ting a theoretical distribution using criteria that aim to minimize
the disparity between the empirical and fitted distributions
over the “entire range of toxicity values”. These so‐called
goodness‐of‐fit measures are sensible and work well for most
applications of statistical distribution fitting. However, as noted
previously in this section, our ultimate use of the SSD is re-
stricted to a very narrow (lower left) portion of the domain. This
has led to suggestions such as fitting the SSD using a method

that somehow gives more weight to the data in the left tail
of the SSD or, alternatively, fitting a mixture of different
distributions (see the later section Dealing with multimodality).

RECENT DEVELOPMENTS
Several meetings have been held to assist in the identification

and resolution of some of the more substantive issues in SSD
modeling. The meeting called by the European Centre for Eco-
toxicology and Toxicology of Chemicals (ECETOC; 2014) repre-
sents the most recent global‐scale effort to review how SSD
methodologies could be further developed. It was attended
by 41 experts from academia, government, and industry from
13 countries, and provided a useful snapshot of some of the more
recent developments in SSD methodologies, including inter-
species correlation estimation, field‐based SSDs, and Bayesian
approaches. Belanger et al. (2017) provided a useful summary of
the key issues discussed at, and research needs arising from, the
workshop. However, this was a one‐off workshop, and although
there was interest in a coordinated ongoing work program, there
has been no subsequent coordinated forum to continue dis-
cussions on the advancement of SSD methodologies. Recently,
and divergent from the typical thinking around the construction of
SSDs and derivation of WQBs, Posthuma et al. (2019) suggested
the need to relax the strict criteria typically prescribed for data
selection and SSD construction, with the aim of deriving WQBs
and assess risk for many more chemicals than is currently the case.
Applying such an approach, they constructed SSDs for >12 000
chemicals, adding to the debate on whether it is better to have
more reliable SSDs and WQBs for fewer chemicals or potentially
less reliable SSDs and WQBs for many more chemicals.

FIGURE 3: Bimodal distribution given by Equation 9 with μ= 2 and σ= 1.75. Modal values at x= 0.262 and x= 3.646.
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In March 2019, a group of 14 Australian scientists met at the
Australian Institute of Marine Science in Townsville, Queens-
land for 3 d to discuss options for improving SSD method-
ologies for deriving WQBs (Fisher et al. 2019). Subsequently, in
November 2019, key Australian and Canadian researchers met
in Victoria (BC, Canada) to identify commonalities in SSD re-
search with a view to harmonizing strategies and approaches to
SSD methodology development. Both meetings paid particular
attention to model averaging and statistical mixture modeling
(discussed later in those sections). These are promising new
developments; the first has been championed by Schwarz and
Tillmanns (2019), and the second has been heavily promoted
by Fox (Fisher et al. 2019).

Our present intention is not to chronicle all recent advances,
but rather to highlight a smaller number of newer develop-
ments and opportunities that address some persistent and
problematic issues with fitting and using SSDs. We consider: 1)
model averaging as a means of alleviating problems with
choosing a single probability model; 2) statistical mixture
modeling to overcome issues associated with bi‐ and multi-
modality of the empirical SSD; and 3) weighting of the lower
tail of the SSD to better reflect our interest in this portion of the
SSD. The material in the following section draws heavily from
the Townsville workshop (Fisher et al. 2019) and the work un-
dertaken by the British Columbia Ministry of Environment and
Climate Change Strategy (Schwarz and Tillmanns 2019).

Model averaging
The absence of biological theory coupled with equivocal

statistical guidance has prompted researchers to consider al-
ternative approaches to SSD model identification. One such
option is model averaging, which potentially provides a more
objective (and robust) way of handling the uncertainty asso-
ciated with the identification of the appropriate distributional
form for the SSD.

Model averaging is an alternative strategy to picking a single
“best” distribution; it has recently been adopted by the British
Columbia Ministry of Environment and Climate Change Strategy
(2019) through the use of ssdtools and is also an option within the
USEPA's recent SSD Toolbox software (US Environmental Pro-
tection Agency 2020). Schwarz and Tillmans (2019) used data sets
extracted from the Canadian Council of Ministers of the Envi-
ronment Guidelines for the Protection of Aquatic Life for boron
(2009) and silver (2015) to assess and compare the results from
model‐averaged and single SSDs. Among other things, they
concluded that model averaging can reduce the uncertainty as-
sociated with fitting distributions to small data sets as well as
providing some immunity to perturbations in HCx values due to
the influence of a single sensitive data point.

The idea of model averaging is straightforward and is
analogous to any averaging process that aims to “iron out the
bumps.” For example, consider the familiar problem of esti-
mating the true mean of a variable, X. Standard statistical
theory tells us that if { … }X X, , n1 are independently, identically
distributed random variables with mean μ and variance σ2 then

the sample mean, X̄ , has the same mean μ but variance σ

n

2
. So,

although both the sample mean and an “individual” ob-
servation are unbiased estimators for the true mean μ, X̄ is
better in the sense that its variance is ( )n

th1 that of X. In other
words, X̄ is more “precise”.

Just as a sample average provides a statistically better es-
timate of the true mean than any individual observation, we
expect that the average of several estimates of an HCx from a
set of plausible SSDs will do better than any individual estimate
from a single SSD. In this case, “better” means that the var-
iance of the error associated with a model‐averaged estimate is
less than that from any single model. Although this generally
turns out to be the case, it has been suggested that model
averaging is only likely to be useful when the error of con-
tributing model predictions is dominated by variance, and if the
covariance between models is low (Dormann et al. 2018).

Another potentially problematic issue with model averaging
is the selection of candidate probability models. As noted by
Burnham and Anderson (2002), the construction of the candi-
date model set involves an element of subjectivity and that
“one must recognize a certain balance between keeping the
set small and focused on plausible hypotheses, while making it
big enough to guard against omitting a very good a priori
model.” Similarly, Wheeler and Bailer (2009) pointed out that
the efficacy of model averaging when applied to dose–
response modeling is very much dependent on the model
space (i.e., the set of candidate models).

As alluded to at the beginning of this section, the central
issues in model averaging are bias and precision (reciprocal of
variance). A full mathematical treatment of model averaging is
outside the scope of the present review, but a brief review will
give context to the remainder of the discussion.

We commence by letting T̂m denote an estimator for some
parameter θ (e.g., the HCx from model m. An assessment of
the adequacy of T̂m as an estimator of θ is provided by the
mean square error (MSE), defined as follows:

[ ]

{ }
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where ( )E ⋅ in Equation 3 denotes mathematical expectation.
The simplest model‐averaged estimate of θ (denoted θ̂) from
k models is the arithmetic mean:
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=k
T

1

m

k

m
1

∑ (4)

Equation 4 is a specific case of the more general weighted
average in which each model‐averaged estimate is assigned
the same weight of =wm k

1 in Equation 5.
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In the context of SSD model averaging, the assignment of
equal weights would rarely make sense because it would be
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inconsistent with both subjective assessment and statistical
measures of goodness‐of‐fit, namely, not all SSD models
perform equally well in describing a given toxicity data set.
So, the issue becomes one of selecting an “optimal” set of
wm values in Equation 5. However, as noted by Dormann
et al. (2018), estimation of this “optimal” set of weights is
itself subject to uncertainty—we don't know the true values
of this optimal set that yield the smallest MSE. In other
words, the estimated “optimal” weights will be suboptimal,
meaning the use of Equation 5 with weights estimated from
the data may result in an estimate that is no better than
one obtained using arbitrary weights (e.g., equal weights;
Dormann et al. 2018).

Although there are various strategies for estimating the
weights in Equation 5, perhaps the most common are those
based on information–theoretic concepts such as the
Kullback–Leibler divergence, which, loosely speaking, is a
measure of the “distance” between a given model and a ref-
erence model (Kullback 1959). We will restrict our attention to
just one of these measures—Akaike's information criterion
(AIC; Akaike 1973), given by Equation 6.

= − ( ˆ)AIC p L2 2 ln (6)

where p is the number of parameters in the model, and L̂ is the
maximum value of the likelihood function for the model. When
n, the number of samples, is small and the models have dif-
ferent numbers of parameters, then the following corrected
version ( )AICc of the AIC is preferred:

= +
( + )

− −
AIC AIC

p p
n p
2 1

1
c (7)

Note that the value of AICc converges to the value of AIC for
an infinitely large sample size. In the context of ecotoxicology,
sample sizes are almost invariably considered “small” (n/p< 40;
Burnham and Anderson 2002), and thus AICc should generally
be used in the SSD context. An exception is when the data are
arbitrarily censored (i.e., where a cut‐off is recorded rather than
an actual numerical value) so as to give more weight to the left
tail, as described in the later section Left‐tail weighting of the
SSD. In such cases, n is no longer defined, and AIC should only
be used if the models have the same number of parameters.
Hereafter, we refer to either version as simply an AIC.

By itself, the AIC is not particularly useful. Its primary role is
to assess and rank a series of candidate models. This is done by
forming the AIC differences:

δ = −AIC AICm m min (8)

where AICmin is the smallest AIC in the set of k models. In
broad terms, the empirical support is: high for models with
δ 2m ≤ ; substantially less for models with δ4 7m≤ ≤ ;
and virtually nil for models with δ > 10m (Burnham and
Anderson 2002).

The weight to be assigned to the estimate from model m is
then computed using Equation 9.
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If the true dose–response model lies within the chosen
model space, Wheeler and Bailer (2009) concluded that model
averaging is superior to other commonly used approaches but
may perform poorly otherwise, and hence the suggestion that
the model space should include a wide variety of model cur-
vatures. The exercise of deciding on an appropriate model set
should be guided by considerations of parsimony and re-
dundancy. By parsimony, we mean balancing the number of
candidate distributions with the variety of distributional shapes
available. Redundancy considerations require us to avoid se-
lecting distributions having similar shapes. This is important
because the weighting mechanism of Equation 9 will over‐
represent a particular SSD shape if 2 or more models fit the
data equally well. To see this, consider 3 SSD models having
AIC values of 1, 1, and 2, indicating that the first 2 models fit
the data equally well. Equation 9 assigns a weight of 0.384 to
models 1 and 2 and a weight of 0.233 to model 3, meaning that
the single shape of the SSD represented by models 1 and 2 is
given a combined weight of 0.768. Eliminating one of the re-
dundant models from this calculation results in a down‐
weighting of the common shape represented by models 1 and
2 from 0.768 to 0.622 and a commensurate increase in the
weight of model 3 from 0.233 to 0.378.

On balance, we believe model averaging provides a level of
flexibility and parsimony that is difficult to achieve with a single
SSD distribution. Although subjective decisions still need to be
made about the model set to which AIC weights are applied,
guidelines and advice are available to assist the selection process.

Dealing with multimodality
Statistical mixture modeling. The technical challenge of
multimodality was discussed earlier in the Multimodality sec-
tion. An alternative strategy to data‐splitting or weighting the
lower portion of the SSD is to fit a mixture of statistical dis-
tributions to the complete toxicity data set. We refer to this as
statistical mixture modeling.

In the remainder of this section, we outline how statistical
mixture modeling may provide a way forward. Although statistical
mixture modeling has previously been used in ecotoxicology (see,
Zajdlik et al. 2009; Zajdlik 2015), it has gained no traction with
practitioners. This may be due to the lack of readily available
software. In statistics, a mixture model is simply a weighted
combination of several individual probability models. Specifically,
a statistical mixture ( Θ)g x; of k distributions is:

λ θ λ λ( Θ) = ( ) =
= =

g x f x; ; 0 1; 1
i

k

i i i
i

k

i
1 1
∑ ∑≤ ≤ (10)

where θi (possibly vector‐valued) and λi are the parameter(s)
and the weight associated with the ith component distribution,
respectively, and θ λΘ = { }= ,i

k
i i1∪ .

By way of example, consider the distribution of toxicity for
the sample of heterotrophs and phototrophs shown in Figure 4.
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The bimodality for these data is clear. Using a single
log–logistic distribution to model the pooled data gives
an estimated HC5 of 1.09 compared with an estimated HC5
of 0.37 from a log–logistic distribution fitted to just the
phototrophs.

Instead of having to choose one or the other of these estimates,
a mixture of 2 log–logistic distributions can be fitted to the pooled
data. This requires estimation of the 5 parameters in Equation 11.

λ μ σ λ μ σ( Θ) = ( ) + ( − ) ( )g x f x f x; ; , 1 ; ,1 1 1 2 2 2 (11)

where μ σ( )f x; ,i i i is a log–logistic probability density function
(pdf ) and μ σ μ σ λΘ = [ ], , , ,T

1 1 2 2 . In Equation 11, μ1 and σ1 are
the log shape and log scale parameters of the first log–logistic

distribution, μ2 and σ2 are the log shape and log scale pa-
rameters of the second log–logistic distribution, and λ is a
mixing parameter or weight to be applied to the component
distributions. The maximum likelihood estimate (mle) of Θ
is Θ̂ = [ ]9.143, 0.462, 2.267, 0.840, 0.584T .

Using Equation 11 with Θ = Θ̂, we obtain an estimated
HC5 of 1.81, which raises 2 important points: 1) the HC5
estimated from a mixture model is not equal to the weighted
average of the individual HC5 values from the component
distributions; and 2) the estimated HC5 from a mixture
model will lie between the HC5 computed using all the data
and the HC5 using just the most sensitive species data. An
indication of the adequacy of the fitted mixture model can be
seen from Figure 5.

FIGURE 4: Empirical species sensitivity distribution (bars) for data comprised of 10 heterotrophs and 7 phototrophs with smooth overlaid (solid
lines).

FIGURE 5: Empirical probability distribution (A) and cumulative probability function (B) for data in Figure 4 together with fitted mixture of 2
log–logistic distributions (solid blue line).
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We believe statistical mixture modeling has an important
role to play in ecotoxicology, and, accordingly, we are currently
developing code to incorporate this capability within the ex-
isting R package ssdtools. Even though they are relatively pa-
rameter heavy (5 parameters for a mixture of 2 log–logistic
distributions), statistical mixture models better match the in-
herent underlying functional process leading to bimodality in
the first place compared with their univariate counterparts (e.g.,
Equation 1), that is, they directly model bimodality as a mixture
of 2 underlying univariate distributions that represent, for ex-
ample, different modes of action. When using statistical mix-
ture models within a model‐averaging approach, the high
penalty in AICc associated with the increased number of pa-
rameters (p in Equation 7) when sample sizes are small will
result in mixture models having low model weights when
sample sizes are small and insufficient to support their robust
estimation.

Left‐tail weighting of the SSD. Some jurisdictions such as
the USEPA exclusively use a small group of the most sensitive
species when generating WQB values (Stephan et al. 1985).
When one is using SSDs to derive WQBs, the question often
arises of whether left‐tail (i.e., sensitive) species should have
more weight when fitting the model and calculating HC5
values.

In practice, more weight could be given to the left‐tail re-
gion by increasing the representation of sensitive species in the
toxicity data set. When this is not a viable option, a relatively
easy way to give greater weight to the toxicity data from the
more sensitive taxa while still utilizing all available data, is to
augment the full data set with additional data resampled from
the most sensitive species. There is, however, a large degree of
subjectivity associated with this process, namely, deciding on a
cut‐off for and amount of additional weighting.

For example, if we add a copy of the toxicity data for the
phototrophs in Figure 4 to the existing full data set and refit the
log–logistic model, we obtain an estimated HC5 of 0.21. This
highlights another difficulty—the estimated HC5 from this
“pseudo‐sample” is smaller than the HC5 obtained from fitting
an SSD to just the phototrophs.

The assumption of the statistical approach is that the
species sensitivity data can be described by a single stat-
istical distribution and that a model fit to all the data will
provide the best estimate of an HC5. When this assumption
is satisfied, there is no reason for giving extra weight to the
left tail when fitting the SSD. However, because this as-
sumption is invariably false, we may wish to improve the fit in
the left portion of the distribution by downweighting the
influence of the extreme right‐tail observations. Such a pro-
cedure has been described by Liu et al. (2018). The concept
is both simple and effective. Consider a random sample of
n independent, identically distributed toxicity values
{ … }X X X, , , n1 2 from a family of distributions parameterized by
the k‐component vector Θ. The k values of Θ can be esti-
mated by maximizing the censored likelihood given by
Equation 12, where the largest n‐m observations have been
artificially censored.

[ ( )] ( )(Θ … ) = − Θ Θ( )
−

=

( )L X X F X f X; , , 1 ; ;n X m
n m

i

m

X i1
1
∏

(12)

where = …( )X i n, 1, 2, ,i are the order statistics and ( Θ)f ;X ⋅

and ( Θ)F ;X ⋅ are the probability density function and cumulative
distribution function, respectively.

Estimated HC5 values from log–logistic distributions obtained
by maximizing Equation 12 for = { … }m 17, , 7 (corresponding to
no censoring to complete censoring of all heterotroph data) were
compared with estimated HC5 values obtained from fitting
log–logistic distributions to only the noncensored portion of the
data (Table 2).

Although no general conclusions can be drawn from the
results shown in Table 2, we see that, in general, differences
between HC5 values from SSDs fitted using Equation 12 and
SSDs fitted to only noncensored data are reasonably similar.
More substantial differences arise as the level of censoring
increases.

In summary, there are several potential options for dealing
with multimodality: 1) use all data to fit the SSD using a un-
imodal model (i.e., do not account for bimodality); 2) use only
the data from the most sensitive species; 3) use all data to fit
the SSD using a statistical mixture model; and 4) use all the
data but assign greater weight to those values in the left‐tail
region (or alternatively, downweight or censor more extreme
values on the right).

The first option requires no subjective decisions other than
those used in the planning and data collection stages of the
SSD modeling exercise. However, this strategy may be prob-
lematic when the fit in the left tail appears worse than the fit in
the middle and upper regions of the SSD. Although the second
strategy is appealing and is consistent with WQB derivation
and risk assessment methodologies in Australia/New Zealand
and elsewhere, it is not unequivocal when there is overlap in
the bimodal distributions. As our limited analyses show, the
high degree of subjectivity associated with left‐tail weighting
and the resultant impact on estimated HC5 values would sug-
gest that this approach (option 4) is suboptimal. Like the first

TABLE 2: Comparison of hazardous concentration for 5% of the spe-
cies (HC5) estimates from log–logistic species sensitivity distribution
(SSD) as a function of censoring of largest i observations

Largest n‐m
observations censored

Estimated HC5

Equation 12
SSD fitted to

noncensored data

0 1.086 1.086
1 0.878 0.823
2 0.665 0.604
3 0.522 0.453
4 0.393 0.354
5 0.316 0.275
6 0.228 0.233
7 0.144 0.226
8 0.161 0.288
9 0.173 0.443
10 0.858 0.858
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option, the third option of fitting a statistical mixture model
requires no additional subjective decisions. It enjoys the same
advantage of using all the data, but unlike other options it does
so in a way that attempts to provide an equally good fit in all
regions of the SSD. For this reason, we suggest that statistical
mixture models be considered for modeling bimodal
distributions, while recognizing that, in some cases (e.g.,
chemical‐specific risk assessments with substances of known
mode of action), it may be more appropriate to split the data
and derive taxa‐specific HCx estimates.

SOFTWARE DEVELOPMENT
Computations associated with fitting and using SSDs are

invariably complex and best handled by purpose‐built soft-
wares such as those listed in Table 1. Some of these software
tools have been in existence for over 20 yr and are both used
and endorsed by regulatory agencies for the purpose of setting
WQBs for marine and freshwater systems. It is not our intention
to provide a comprehensive review of all these tools, but rather
to highlight new additions and features. Accordingly, we
focus on 2 products: the ssdtools R package (Thorley and
Schwarz 2018) together with the associated shinyssdtools
app (Dalgarno 2018); and the recently released SSD Toolbox
(US Environmental Protection Agency 2020).

Shinyssdtools app
ssdtools is an R software package developed for the British

Columbia Ministry of Environment and Climate Change
Strategy (Thorley and Schwarz 2018). A web‐based graphical
user interface to ssdtools, shinyssdtools uses the R shiny
package (Chang et al. 2019).

Web deployment of apps is becoming increasingly popular
and has several advantages over stand‐alone software. In par-
ticular, the user is guaranteed to be using the most up‐to‐date
version of the software as well as being able to run analyses
from any device that supports browsing. Furthermore, being an
R package means the ssdtools source code is completely
transparent and available for local modification. As noted
previously in the Current Status section, issues such as stat-
istical consistency and transparency need to be considered
when one is using SSDs for various purposes, and there is
likely to be demand for both modifiable and “locked” (i.e.,
compiled) code.

The shinyssdtools interface is available (Dalgarno 2018), al-
though shinyssdtools is itself an R package (GitHub 2019b) that
can be run locally. The interface is clean and simple and allows
the user to either cut and paste data directly into the app or
upload from a local csv file. Although individual distributions
can be used to obtain HCx values, the focus and strength of
ssdtools is its intrinsic use of model averaging. The R package
ssdtools and the accompanying Shiny app (Dalgarno 2018)
currently fit log–normal, log–logistic, and gamma by default
and, optionally, log–Gumbel, Gompertz, and Weibull. The

default distributions were selected in accordance with our
concepts of parsimony and redundancy.

The log–normal distribution was selected as the starting
distribution, given that the data are for effect concentrations.
The log–normal distribution does have several characteristics
that need to be considered when one is fitting species
sensitivity data. First, on the logarithmic scale, the normal
distribution is symmetrical, and there are no a priori grounds
on which to make any assumption about an SSD's shape or
scale whether that be on the original or log‐transformed
scale. Second, the log–normal distribution decays quickly in
the tails, giving narrow tails that may not adequately fit
the data.

The log–logistic distribution was selected as it is often used
as a candidate SSD primarily because of its analytic tractability
(Aldenderg and Slob 1993). It was included because it has
wider tails than log–normal and because it is a specific case of
the more general Burr family of distributions (Burr 1942;
Shao 2000).

The gamma distribution is a 2‐parameter distribution com-
monly used to model failure times or time to events. For use in
modeling species sensitivity data, the gamma distribution has
2 key features that provide additional flexibility when added to
the log–normal distribution: 1) it is asymmetrical on the loga-
rithmic scale; and 2) it has wider tails. The Weibull distribution
was also considered as a default distribution, but the gamma
distribution is generally more flexible while capturing similar
shaped distributions to the Weibull.

SSD Toolbox
The SSD Toolbox is a USEPA product. It is made available as

a Windows executable file and can be downloaded from the
USEPA website. (US Environmental Protection Agency 2020).

Before using SSD Toolbox, the user must also download and
install Ver 9.5 of the MATLAB Runtime Compiler (MCR) from
Mathworks. The MCR software enables the compiled code to
execute without having to purchase the MATLAB product. It is,
however, a resource‐hungry piece of software, with its 88 000+
files consuming 3.75 GB of hard disk space.

Overall, SSD Toolbox is a comprehensive piece of software
that essentially performs the same functions as ssdtools with
some additional features (Table 1). It has a GUI that is ad-
equate, but not as esthetically appealing as the shinyssdtools
app. There are 6 theoretical distributions for SSD fitting log‐
transformed data (normal; logistic; triangular; Gumbel; Weibull;
Burr) using up to 4 fitting methods (maximum likelihood;
moment matching; cdf linearization; and Bayesian methods).
Although the triangular distribution is formally used by the
USEPA for deriving ambient water quality criteria, this dis-
tribution is a curious inclusion given that it has tail character-
istics that are not generally encountered in practice and
therefore not widely used as a realistic SSD. The cdf lineariza-
tion method is also an unusual choice because this is a rela-
tively crude way of fitting distributions and provides SSD
parameter estimates that do not necessarily share the desirable
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statistical properties enjoyed by other methodologies such as
maximum likelihood estimation.

FUTURE DIRECTIONS
We acknowledged the limitations and conceptual difficulties

with SSD modeling in the Introduction. Even so, and recog-
nizing a potential future for non‐SSD (i.e., distribution‐free)
methods, we are of the view that the SSD methodology re-
mains the most credible and statistically defensible way of es-
tablishing protective concentrations of toxicants in aquatic
environments in the short to medium term. The methodo-
logical developments we describe have addressed some long‐
standing issues such as choice of an appropriate probability
model and difficulties introduced by bi‐ and multimodality, and
numerous refinements to other aspects of SSDs have been
published by others over the past 20 yr (see references cited in
the Introduction). Nevertheless, there are still several long‐
standing and unresolved issues with SSDs, including small
sample bias in SSD parameter estimates, convergence issues
with more complex models, and other issues as identified by
Belanger et al. (2017). Moreover, there are other areas where
progress has been made and/or further investigation may be
warranted (see, use of censored data [Aldenberg 2015] and
Bayesian methods [Fox 2010; Takehiko and Kashiwagi 2010]).
In terms of our own research and development efforts, we have
identified the following priority issues that will form the basis
of further collaboration between Australian and Canadian
jurisdictions.

Numerical stability issues
The use of the Burr family of distributions has been central

to the derivation of guideline values in Australia and New
Zealand for over 20 yr. While offering a high degree of flexi-
bility, experience with these distributions during that time has
repeatedly highlighted numerical stability and convergence
issues when parameters are estimated using maximum like-
lihood. This is thought to be due to the high degree of colli-
nearity between parameter estimates and/or relatively flat
likelihood profiles. Companion issues to be explored during
this phase include estimation strategies and identification of
initial values for iterative methods.

Benchmark data sets
Lack of agreement about derived quantities such as an HCx

arising from different SSD modeling strategies and tool de-
velopment undermines the credibility of the methodology. As
we argue, we believe it is both desirable and necessary to
assemble a collection of reference data sets having certified
properties that can be used to evaluate SSD methodologies
and software tools. We envisage that this collection will be
comprised of both real and synthetic (i.e., computer‐
generated) data sets and will have the ability to test both the
accuracy and the stability of SSD software.

Statistical mixture modelling
We propose to continue development and refinement of

statistical mixture modeling methodologies. This includes 1)
identifying optimal parameter estimation strategies; and 2) an
assessment of the performance of AICc‐based model‐weighted
averaging using candidate model sets that include mixture
distributions. If the approach proves robust across a range of
sample sizes and scenarios, it may be possible to incorporate
mixture distributions as an option within the ssdtools package
and shiny app.

HCx and confidence interval estimation
Further work is required to understand the strengths and

weaknesses of competing methods of estimating HCx values
and associated confidence intervals post distribution fitting.
The software tools listed in Table 1 employ a mixture of strat-
egies including: inversion of the fitted cdf, bootstrapping, and
numerical approximations such as the delta method. We also
plan to investigate the potential of profile‐likelihood–based
confidence intervals as a more robust and defensible strategy.

Identification of default distributions for model
averaging

We strongly support model averaging as a means of (par-
tially) resolving the issue of distribution selection in SSD mod-
eling. How to make a rational and defensible selection of the
default set of distributions to be used in the model averaging is
an open issue. After all, model averaging can only assign
weights to distributions in the candidate list and is blind to
potentially better, but unspecified alternatives.

In conclusion, we note that advances in software archi-
tectures have opened new possibilities for researchers and
practitioners to interact and contribute to SSD tool develop-
ment in ways that hitherto have not been possible. The chal-
lenge as we see it now is how to better coordinate these
interactions and avoid unnecessary duplication of effort and
software redundancy. To this end, our participation in an SSD
modeling workshop in Victoria, in November 2019 was the
first tentative step toward jurisdictional harmonization of
methodological approaches and SSD tool development for
Australia/New Zealand and Canada.

Given the different policy objectives, levels of risk tolerance,
and species compositions, global harmonization of WQB der-
ivation methods may be difficult to achieve; however, specific
aspects of the WQB derivation method can be standardized to
improve the comparison of WQBs across jurisdictions, to in-
crease collaboration, and to reduce duplication of effort. For
example, Warne et al. (2018) called for increased effort to
harmonize data assessment procedures such that jurisdictions
can access a common database of toxicity data for WQB der-
ivation. Sharing data sets would greatly reduce the effort un-
dertaken by individual jurisdictions when they are deriving
WQBs and would also remove this source of variability when
WQBs are compared across jurisdictions. Pursuing a goal of
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international harmonization of key aspects of WQB derivation
would be greatly assisted by a more formal and regularly
convened multinational group of experts that considers and
investigates opportunities for improvements to and harmo-
nization of WQB derivation methods, and that makes recom-
mendations (based on research and development) that
jurisdictions could then adopt as their respective timelines
allow.

Although various forums have aimed at advancing the sci-
ence of WQB derivation (e.g., ECETOC, and the “Environ-
mental Quality Standards for Protection of the Aquatic
Environment” series of conferences), one‐off or even periodic
efforts will not be as effective at enabling long‐term material
advances in the way that WQBs are derived at an international
scale. Although the specific statistical issues we describe will be
pursued through the current Australia/New Zealand and
Canada collaboration, a broader multinational forum is needed
to evaluate new and improved approaches to WQB derivation
and facilitate their common adoption.
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